MySQL Index
何为索引?有什么作用?
索引是一种用于快速查询和检索数据的数据结构。常见的索引结构有: B 树, B+树和 Hash。
索引的作用就相当于目录的作用。打个比方: 我们在查字典的时候,如果没有目录,那我们就只能一页一页的去找我们需要查的那个字,速度很慢。如果有目录了,我们只需要先去目录里查找字的位置,然后直接翻到那一页就行了。
索引的优缺点
优点 :
- 使用索引可以大大加快 数据的检索速度(大大减少检索的数据量), 这也是创建索引的最主要的原因。
- 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
缺点 :
- 创建索引和维护索引需要耗费许多时间。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
- 索引需要使 用物理文件存储,也会耗费一定空间。
但是,使用索引一定能提高查询性能吗?
大多数情况下,索引查询都是比全表扫描要快的。但是如果数据库的数据量不大,那么使用索引也不一定能够带来很大提升。
索引的底层数据结构
Hash 表 & B+树
哈希表是键值对的集合,通过键(key)即可快速取出对应的值(value),因此哈希表可以快速检索数据(接近 O(1))。
为何能够通过 key 快速取出 value 呢? 原因在于 哈希算法(也叫散列算法)。通过哈希算法,我们可以快速找到 value 对应的 index,找到了 index 也就找到了对应的 value。
hash = hashfunc(key)
index = hash % array_size
但是!哈希算法有个 Hash 冲突 问题,也就是说多个不同的 key 最后得到的 index 相同。通常情况下,我们常用的解决办法是 链地址法。链地址法就是将哈希冲突数据存放在链表中。就比如 JDK1.8 之前 HashMap
就是通过链地址法来解决哈希冲突的。不过,JDK1.8 以后HashMap
为了减少链表过长的时候搜索时间过长引入了红黑树。
为了减少 Hash 冲突的发生,一个好的哈希函数应该“均匀地”将数据分布在整个可能的哈希值集合中。
既然哈希表这么快,为什么 MySQL 没有使用其作为索引的数据结构呢?
1.Hash 冲突问题 :我们上面也提到过 Hash 冲突了,不过对于数据库来说这还不算最大的缺点。
2.Hash 索引不支持顺序和范围查询(Hash 索引不支持顺序和范围查询是它最大的缺点: 假如我们要对表中的数据进行排序或者进行范围查询,那 Hash 索引可就不行了。
试想一种情况:
SELECT * FROM tb1 WHERE id < 500;Copy to clipboardErrorCopied
在这种范围查询中,优势非常大,直接遍历比 500 小的叶子节点就够了。而 Hash 索引是根据 hash 算法来定位的,难不成还要把 1 - 499 的数据,每个都进行一次 hash 计算来定位吗?这就是 Hash 最大的缺点了。
B 树& B+树
B 树也称 B-树,全称为 多路平衡查找树 ,B+ 树是 B 树的一种变体。B 树和 B+树中的 B 是 Balanced
(平衡)的意思。
目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。
B 树& B+树两者有何异同呢?
- B 树的所有节点既存放键(key) 也存放 数据(data),而 B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
- B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
- B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
在 MySQL 中,MyISAM 引擎和 InnoDB 引擎都是使用 B+Tree 作为索引结构,但是,两者的实现方式不太一样。(下面的内容整理自《Java 工程师修炼之道》)
MyISAM 引擎中,B+Tree 叶节点的 data 域存放的是数据记录的地址。在索引检索的时候,首先按照 B+Tree 搜索算法搜索索引 ,如果指定的 Key 存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。这被称为“非聚簇索引”。
InnoDB 引擎中,其数据文件本身就是索引文件。相比 MyISAM,索引文件和数据文件是分离的,其表数据文件本身就是按 B+Tree 组织的一个索引结构,树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。这被称为“聚簇索引(或聚集索引)”,而其余的索引都作为辅助索引,辅助索引的 data 域存储相应记录主键的值而不是地址,这也是和 MyISAM 不同的地方。在根据主索引搜索时,直接找到 key 所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,在走一遍主索引。 因此,在设计表的时候,不建议使用过长的字段作为主键,也不建议使用非单调的字段作为主键,这样会造成主索引频繁分裂。
索引类型
主键索引(Primary Key)
数据表的主键列使用的就是主键索引。
一张数据表有只能有一个主键,并且主键不能为 null,不能重复。
在 MySQL 的 InnoDB 的表中,当没有显示的指定表的主键时,InnoDB 会自动先检查表中是否有唯一索引的字段,如果有,则选择该字段为默认的主键,否则 InnoDB 将会自动创建一个 6Byte 的自增主键。
二级索引(辅助索引)
二级索引又称为辅助索引,是因为二级索引的叶子节点存储的数据是主键。也就是说,通过二级索引,可以定位主键的位置。
唯一索引,普通索引,前缀索引等索引属于二级索引。
PS:不懂的同学可以暂存疑,慢慢往下看,后面会有答案的,也可以自行搜索。
- 唯一索引(Unique Key) :唯一索引也是一种约束。唯一索引的属性列不能出现重复的数据,但是允许数据为 NULL,一张表允许创建多个唯一索引。 建立唯一索引的目的大部分时候都是为了该属性列的数据的唯一性,而不是为了查询效率。
- 普通索引(Index) :普通索引的唯一作用就是为了快速查询数据,一张表允许创建多个普通索引,并允许数据重复和 NULL。
- 前缀索引(Prefix) :前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小, 因为只取前几个字符。
- 全文索引(Full Text) :全文索引主要是为了检索大文本数据中的关键字的信息,是目前搜索引擎数据库使用的一种技术。Mysql5.6 之前只有 MYISAM 引擎支持全文索引,5.6 之后 InnoDB 也支持了全文索引。
二级索引:
聚集索引与非聚集索引
聚集索引
聚集索引即索引结构和数据一起存放的索引。主键索引属于聚集索引。
在 Mysql 中,InnoDB 引擎的表的 .ibd
文件就包含了该表的索引和数据,对于 InnoDB 引擎表来说,该表的索引(B+树)的每个非叶子节点存储索引,叶子节点存储索引和索引对应的数据。
聚集索引的优点
聚集索引的查询速度非常的快,因为整个 B+树本身就是一颗多叉平衡树,叶子节点也都是有序的,定位到索引的节点,就相当于定位到了数据。
聚集索引的缺点
- 依赖于有序的数据 :因为 B+树是多路平衡树,如果索引的数据不是有序的,那么就需要在插入时排序,如果数据是整型还好,否则类似于字符串或 UUID 这种又长又难比较的数据,插入或查找的速度肯定比较慢。
- 更新代价大 : 如果对索引列的数据被修改时,那么对应的索引也将会被修改, 而且况聚集索引的叶子节点还存放着数据,修改代价肯定是较大的, 所以对于主键索引来说,主键一般都是不可被修改的。